Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.094
Filtrar
1.
Front Immunol ; 15: 1373255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585266

RESUMO

Acting through a combination of direct and indirect pathogen clearance mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal role in innate immunity, safeguarding the host against invading microorganisms. Besides their antimicrobial activity, some AMCs can neutralize endotoxins, preventing their interaction with immune cells and avoiding an excessive inflammatory response. In this study, we aimed to investigate the influence of unfractionated heparin, a polyanionic drug clinically used as anticoagulant, on the endotoxin-neutralizing and antibacterial activity of blood-derived AMCs. Serum samples from healthy donors were pre-incubated with increasing concentrations of heparin for different time periods and tested against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and P. aeruginosa. Heparin dose-dependently decreased the activity of blood-derived AMCs. Consequently, pre-incubation with heparin led to increased activity of LPS and higher values of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Accordingly, higher concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa were observed as well. These findings underscore the neutralizing effect of unfractionated heparin on blood-derived AMCs in vitro and may lead to alternative affinity techniques for isolating and characterizing novel AMCs with the potential for clinical translation.


Assuntos
Anti-Infecciosos , Heparina , Heparina/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Endotoxinas/farmacologia , Klebsiella pneumoniae
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612737

RESUMO

Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.


Assuntos
Benzenossulfonatos , Lipídeo A , Lipopolissacarídeos , Humanos , Bactérias , Endotoxinas , Glicolipídeos
3.
Front Cell Infect Microbiol ; 14: 1382160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572323

RESUMO

Introduction: The infection with Eimeria tenella (ET) can elicit expression of various intestinal immune cells, incite inflammation, disrupt intestinal homeostasis, and facilitate co-infection with diverse bacteria. However, the reciprocal interaction between intestinal immune cells and intestinal flora in the progression of ET-infection remains unclear. Objective: The aim of this study was to investigate the correlation between cecal microbial endotoxin (CME)-related genes and intestinal immunity in ET-infection, with subsequent identification of hub potential biomarker and immunotherapy target. Methods: Differential expression genes (DEGs) within ET-infection and hub genes related to CME were identified through GSE39602 dataset based on bioinformatic methods and Protein-protein interaction (PPI) network analysis. Moreover, immune infiltration was analyzed by CIBERSORT method. Subsequently, comprehensive functional enrichment analyses employing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis along with Gene Ontology (GO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were performed. Results: A total of 1089 DEGs and 25 hub genes were identified and CXCR4 was ultimately identified as a essential CME related potential biomarker and immunotherapy target in the ET-infection. Furthermore, activated natural killer cells, M0 macrophages, M2 macrophages, and T regulatory cells were identified as expressed intestinal immune cells. The functional enrichment analysis revealed that both DEGs and hub genes were significantly enriched in immune-related signaling pathways. Conclusion: CXCR4 was identified as a pivotal CME-related potential biomarker and immunotherapy target for expression of intestinal immune cells during ET-infection. These findings have significant implications in elucidating the intricate interplay among ET-infection, CME, and intestinal immunity.


Assuntos
Eimeria tenella , Microbiota , Endotoxinas , Eimeria tenella/genética , Biologia Computacional , Biomarcadores
4.
Mol Neurodegener ; 19(1): 30, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561809

RESUMO

Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aß expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Endotoxinas/toxicidade , Endotoxinas/metabolismo , Lipopolissacarídeos , Microglia/metabolismo , Inflamação/metabolismo , Peptídeos beta-Amiloides/metabolismo
5.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594617

RESUMO

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Assuntos
Bacillus thuringiensis , Mariposas , Praguicidas , Animais , Larva/genética , Larva/metabolismo , Soja/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores/métodos , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromossomos/metabolismo , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas/genética
6.
J Agric Food Chem ; 72(14): 8180-8188, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556749

RESUMO

Juvenile hormone binding protein (JHBP) is a key regulator of JH signaling, and crosstalk between JH and 20-hydroxyecdysone (20E) can activate and fine-tune the mitogen-activated protein kinase cascade, leading to resistance to insecticidal proteins from Bacillis thuringiensis (Bt). However, the involvement of JHBP in the Bt Cry1Ac resistance of Plutella xylostella remains unclear. Here, we cloned a full-length cDNA encoding JHBP, and quantitative real-time PCR (qPCR) analysis showed that the expression of the PxJHBP gene in the midgut of the Cry1Ac-susceptible strain was significantly higher than that of the Cry1Ac-resistant strain. Furthermore, CRISPR/Cas9-mediated knockout of the PxJHBP gene significantly increased Cry1Ac susceptibility, resulting in a significantly shorter lifespan and reduced fertility. These results demonstrate that PxJHBP plays a critical role in the resistance to Cry1Ac protoxin and in the regulation of physiological metabolic processes associated with reproduction in adult females, providing valuable insights to improve management strategies of P. xylostella.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Feminino , Mariposas/genética , Mariposas/metabolismo , Larva/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Longevidade , Sistemas CRISPR-Cas , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética
7.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474770

RESUMO

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Assuntos
Flavonoides , Sepse , Choque Séptico , Camundongos , Animais , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Choque Séptico/tratamento farmacológico , Endotoxinas , Citocinas/metabolismo , Sepse/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
8.
PLoS One ; 19(3): e0299483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457466

RESUMO

In Nebraska USA, many populations of western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, now exhibit some level of resistance to all corn rootworm-active Bacillus thuringiensis Berliner (Bt) proteins expressed in commercial hybrids. Therefore, a study was conducted in northeast Nebraska from 2020-2022 to reevaluate current corn rootworm management options in continuous maize (consecutive planting for ≥2 years). Results from on-farm experiments to evaluate a standard soil-applied insecticide (Aztec® 4.67G) in combination with non-rootworm Bt or rootworm-active Bt pyramided maize (Cry3Bb1 + Gpp34Ab1/Tpp35Ab1) are reported within the context of WCR Bt resistance levels present. Corrected survival from Bt pyramid single-plant bioassays (<0.3, 0.3-0.49, >0.5) was used to place populations into 3 resistance categories. Variables evaluated included root injury, adult emergence, proportion lodged maize, and grain yield. Key results: A composite analysis of all populations across resistance levels indicated that addition of soil insecticide to Bt pyramid significantly reduced adult emergence and lodging but did not significantly increase root protection or yield. Within and among resistance category analyses of root injury revealed that the Bt pyramid remained highly efficacious at any non-rootworm Bt root injury level when resistance was absent or low. When corrected survival was >0.3, mean Bt pyramid root injury tracked more closely in a positive linear fashion with mean non-rootworm Bt root injury (rootworm density x level of resistance interaction). Similar trends were obtained for adult emergence but not yield. Mean Bt pyramid root injury rating was <0.75 in most populations with Bt resistance, which contributed to no significant yield differences among categories. Results are discussed within the context of IPM:IRM tradeoffs and the need to reduce WCR densities in this system to decrease the impact of the density x resistance interaction to bridge use of current pyramids with new technologies introduced over the next decade.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Besouros/genética , Zea mays/genética , Zea mays/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores , Solo , Larva/metabolismo
9.
Pestic Biochem Physiol ; 199: 105777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458684

RESUMO

The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Spodoptera , Endotoxinas/genética , Resistência a Inseticidas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus thuringiensis/metabolismo , Zea mays , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética
10.
Res Vet Sci ; 171: 105205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479101

RESUMO

Sepsis/endotoxemia associates with coagulation abnormalities. We showed previously that exogenous choline treatment reversed the changes in platelet count and function as well as prevented disseminated intravascular coagulation (DIC) in endotoxemic dogs. The aim of this follow-up study was to evaluate the effect of treatment with choline or cytidine-5'-diphosphocholine (CDP-choline), a choline donor, on endotoxin-induced hemostatic alterations using thromboelastography (TEG). Dogs were randomized to six groups and received intravenously (iv) saline, choline (20 mg/kg) or CDP-choline (70 mg/kg) in the control groups, whereas endotoxin (0.1 mg/kg, iv) was used alone or in combination with choline or CDP-choline at the same doses in the treatment groups. TEG variables including R- and K-time (clot formation), maximum amplitude (MA) and α-angle (clot stability), G value (clot elasticity), and EPL, A, and LY30 (fibrinolysis), as well as overall assessment of coagulation (coagulation index - CI), were measured before and at 0.5-48 h after the treatments. TEG parameters did not change significantly in the control groups, except for CI parameter after choline administration. Endotoxemia resulted in increased R-time and A value (P < 0.05), decreased K-time (P < 0.05), α-angle (P < 0.001) and CI values (P < 0.01) at different time points. Treatment with either choline or CDP-choline attenuated or prevented completely the alterations in TEG parameters in endotoxemic dogs with CDP-choline being more effective. These results confirm and extend the effectiveness of choline or CDP-choline in endotoxemia by further demonstrating their efficacy in attenuating or preventing the altered viscoelastic properties of blood clot measured by TEG.


Assuntos
Doenças do Cão , Endotoxemia , Hemostáticos , Cães , Animais , Endotoxinas/efeitos adversos , Citidina Difosfato Colina/efeitos adversos , Colina/farmacologia , Colina/uso terapêutico , Tromboelastografia/veterinária , Tromboelastografia/métodos , Hemostáticos/efeitos adversos , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Endotoxemia/veterinária , Seguimentos , Doenças do Cão/tratamento farmacológico
11.
Biomolecules ; 14(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540692

RESUMO

Recent studies have suggested that ABC transporters are the main receptors of Cry toxins. However, the receptors of many Cry toxins have not been identified. In this study, we used a heterologous cell expression system to identify Bombyx mori ABC transporter subfamily C members (BmABCCs) that function as receptors for five Cry toxins active in Lepidopteran insects: Cry1Aa, Cry1Ca, Cry1Da, Cry8Ca, and Cry9Aa. All five Cry toxins can use multiple ABCCs as low-efficiency receptors, which induce cytotoxicity only at high concentrations. Surface plasmon resonance analysis revealed that the KD values between the toxins and BmABCC1 and BmABCC4 were 10-5 to 10-9 M, suggesting binding affinities 8- to 10,000-fold lower than those between Cry1Aa and BmABCC2, which are susceptibility-determining receptors for Cry1Aa. Bioassays in BmABCC-knockout silkworm strains showed that these low-efficiency receptors are not involved in sensitivity to Cry toxins. The findings suggest that each family of Cry toxins uses multiple BmABCCs as low-efficiency receptors in the insect midgut based on the promiscuous binding of their receptor-binding regions. Each Cry toxin seems to have evolved to utilize one or several ABC transporters as susceptibility-determining receptors.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Toxinas de Bacillus thuringiensis , Bombyx , Proteínas Hemolisinas , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bombyx/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Endotoxinas , Insetos/metabolismo , Proteínas de Bactérias/metabolismo
12.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38451817

RESUMO

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hepatopatias , Sepse , Humanos , Células de Kupffer , Fígado/patologia , Hepatopatias/patologia , Organoides , Sepse/patologia , Endotoxinas , Diferenciação Celular
13.
J Agric Food Chem ; 72(13): 7291-7298, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507714

RESUMO

Bacillus thuringiensis (Bt) is widely used to produce biological pesticides. However, its persistence is limited because of ultraviolet (UV) rays. In our previous study, we found that exogenous intermediates of the urea cycle were beneficial to Bt for survival under UV stress. To further explore the effect of the urea cycle on the resistance mechanism of Bt, the rocF/argG gene, encoding arginase and argininosuccinate synthase, respectively, were knocked out and recovered in this study. After the target genes were removed, respectively, the urea cycle in the tested Bt was inhibited to varying degrees. The UV stress test showed that the urea cycle disorder could reduce the resistance of Bt under UV stress. Meanwhile, the antioxidant enzyme activities of Bt were also decreased to varying degrees due to the knockout of the target genes. All of these results revealed that the urea cycle can metabolically regulate the stress resistance of Bt.


Assuntos
Bacillus thuringiensis , Bacillus thuringiensis/genética , Ureia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia
14.
Nat Immunol ; 25(4): 693-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486019

RESUMO

The inflammasome components NLRP3 and ASC are cytosolic proteins, which upon sensing endotoxins or danger cues, form multimeric complexes to process interleukin (IL)-1ß for secretion. Here we found that antigen (Ag)-triggered degranulation of IgE-sensitized mast cells (MCs) was mediated by NLRP3 and ASC. IgE-Ag stimulated NEK7 and Pyk2 kinases in MCs to induce the deposition of NLRP3 and ASC on granules and form a distinct protein complex (granulosome) that chaperoned the granules to the cell surface. MCs deficient in NLRP3 or ASC did not form granulosomes, degranulated poorly in vitro and did not evoke systemic anaphylaxis in mice. IgE-Ag-triggered anaphylaxis was prevented by an NLRP3 inhibitor. In endotoxin-primed MCs, pro-IL-1ß was rapidly packaged into granules after IgE-Ag stimulation and processed within granule remnants by proteases after degranulation, causing lethal anaphylaxis in mice. During IgE-Ag-mediated degranulation of endotoxin-primed MCs, granulosomes promoted degranulation, combined with exteriorization and processing of IL-1ß, resulting in severe inflammation.


Assuntos
Anafilaxia , Inflamassomos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mastócitos , Anafilaxia/metabolismo , Imunoglobulina E/metabolismo , Endotoxinas/metabolismo , Degranulação Celular
15.
J Agric Food Chem ; 72(14): 7807-7817, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38514390

RESUMO

Mg(OH)2 was used as the nanocarrier of the Bacillus thuringiensis (Bt) Cry1Ac protein, and the synthesized Cry1Ac-Mg(OH)2 composites were regular and uniform nanosheets. Nano-Mg(OH)2 could effectively improve the insecticidal effect of the Cry1Ac protein toward Ectropis obliqua. It could enhance the damage degree of the Cry1Ac protein to intestinal epithelial cells and microvilli, induce and enrich the production of reactive oxygen species (ROS) in the midgut, and enhance the degradation of the Cry1Ac protein into active fragments. Furthermore, an anti-rinsing assay showed that the Cry1Ac-Mg(OH)2 composites were bound to the notch structure of the tea leaf surface. The retention of the Cry1Ac protein increased by 11.45%, and sprayed nano-Mg(OH)2 was rapidly absorbed by different tissues of tea plants. Moreover, nano-Mg(OH)2 and composites did not significantly affect non-target organisms. These results show that nano-Mg(OH)2 can serve as a safe and effective biopesticide carrier, which provides a new approach for stable and efficient Bt preparation.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Proteínas Hemolisinas/metabolismo , Chá/metabolismo , Larva , Resistência a Inseticidas
16.
Sci Rep ; 14(1): 5832, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461172

RESUMO

Regional pulmonary perfusion (Q) has been investigated using blood volume (Fb) imaging as an easier-to-measure surrogate. However, it is unclear if changing pulmonary conditions could affect their relationship. We hypothesized that vascular changes in early acute respiratory distress syndrome (ARDS) affect Q and Fb differently. Five sheep were anesthetized and received lung protective mechanical ventilation for 20 h while endotoxin was continuously infused. Using dynamic 18F-FDG and 13NN Positron Emission Tomography (PET), regional Fb and Q were analysed in 30 regions of interest (ROIs) and normalized by tissue content (Fbn and Qn, respectively). After 20 h, the lung injury showed characteristics of early ARDS, including gas exchange and lung mechanics. PET images of Fbn and Qn showed substantial differences between baseline and lung injury. Lung injury caused a significant change in the Fbn-Qn relationship compared to baseline (p < 0.001). The best models at baseline and lung injury were Fbn = 0.32 + 0.690Qn and Fbn = 1.684Qn-0.538Qn2, respectively. Endotoxine-associated early ARDS changed the relationship between Fb and Q, shifting from linear to curvilinear. Effects of endotoxin exposure on the vasoactive blood flow regulation were most likely the key factor for this change limiting the quantitative accuracy of Fb imaging as a surrogate for regional Q.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Ovinos , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Perfusão , Volume Sanguíneo , Endotoxinas/toxicidade
17.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473721

RESUMO

Our study highlighted the immune changes by pro-inflammatory biomarkers in the gut-liver-axis-linked ROS-cell death mechanisms in chronic and acute inflammations when gut cells are exposed to endotoxins in patients with hepatic cirrhosis or steatosis. In duodenal tissue samples, gut immune barrier dysfunction was analyzed by pro-inflammatory biomarker expressions, oxidative stress, and cell death by flow cytometry methods. A significant innate and adaptative immune system reaction was observed as result of persistent endotoxin action in gut cells in chronic inflammation tissue samples recovered from hepatic cirrhosis with the A-B child stage. Instead, in patients with C child stage of HC, the endotoxin tolerance was installed in cells, characterized by T lymphocyte silent activation and increased Th1 cytokines expression. Interesting mechanisms of ROS-cell death were observed in chronic and acute inflammation samples when gut cells were exposed to endotoxins and immune changes in the gut-liver axis. Late apoptosis represents the chronic response to injury induction by the gut immune barrier dysfunction, oxidative stress, and liver-dysregulated barrier. Meanwhile, necrosis represents an acute and severe reply to endotoxin action on gut cells when the immune system reacts to pro-inflammatory Th1 and Th2 cytokines releasing, offering protection against PAMPs/DAMPs by monocytes and T lymphocyte activation. Flow cytometric analysis of pro-inflammatory biomarkers linked to oxidative stress-cell death mechanisms shown in our study recommends laboratory techniques in diagnostic fields.


Assuntos
Endotoxinas , Inflamação , Criança , Humanos , Endotoxinas/metabolismo , Espécies Reativas de Oxigênio , Cirrose Hepática , Apoptose , Citocinas , Biomarcadores
18.
Mol Immunol ; 168: 64-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428216

RESUMO

Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.


Assuntos
Lesão Pulmonar Aguda , Endotoxinas , Animais , Camundongos , Endotoxinas/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Hidrogênio/efeitos adversos , Hidrogênio/metabolismo , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Methods Mol Biol ; 2789: 101-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506995

RESUMO

Beta-glucans with diverse chemical structures are produced by a variety of microorganisms and are commonly found in microbial cell walls. ß-(1,3)-D-glucans are present in yeast and fungi, and, for this reason, their traces are commonly used as a sign of yeast or fungal infection or contamination. Despite being less immunologically active than endotoxins, beta-glucans are pro-inflammatory and can activate cytokines and other immunological responses via their cognate pattern recognition receptors. Unlike endotoxins, there is no established threshold pyrogen dose for beta-glucans; as such, their quantity in pharmaceutical products is not regulated. Nevertheless, regulatory agencies recognize the potential contribution of beta-glucans to the immunogenicity of protein-containing drug products and recommend assessing beta-glucans to aid the interpretation of immunotoxicity studies and assess the risk of immunogenicity. The protocol for the detection and quantification of ß-(1,3)-D-glucans in nanoparticle formulations is based on a modified limulus amoebocyte lysate assay. The results of this test are used to inform immunotoxicity studies of nanotechnology-based drug products.


Assuntos
Nanopartículas , beta-Glucanas , beta-Glucanas/química , Saccharomyces cerevisiae , Glucanos , Endotoxinas , Nanopartículas/efeitos adversos , Nanopartículas/química
20.
Methods Mol Biol ; 2789: 87-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506994

RESUMO

Monitoring endotoxin contamination in drugs and medical devices is required to avoid pyrogenic responses and septic shock in patients receiving these products. Endotoxin contamination of engineered nanomaterials and nanotechnology-based medical products represents a significant translational hurdle. Nanoparticles often interfere with an in vitro limulus amebocyte lysate (LAL) assay commonly used in the pharmaceutical industry for the detection and quantification of endotoxin. Such interference challenges the preclinical development of nanotechnology-formulated drugs and medical devices containing engineered nanomaterials. Protocols for the analysis of nanoparticles using LAL assays have been reported before. Here, we discuss considerations for selecting an LAL format and describe a few experimental approaches for overcoming nanoparticle interference with the LAL assays to obtain more accurate estimations of endotoxin contamination in nanotechnology-based products. The discussed approaches do not solve all types of nanoparticle interference with the LAL assays but could be used as a starting point to address the problem. This chapter also describes approaches to prevent endotoxin contamination in nanotechnology-formulated products.


Assuntos
Endotoxinas , Nanopartículas , Animais , Humanos , Endotoxinas/análise , Bioensaio/métodos , Caranguejos Ferradura , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...